Silencing of STIM1 attenuates hypoxia-induced PASMCs proliferation via inhibition of the SOC/Ca2+/NFAT pathway
نویسندگان
چکیده
BACKGROUND Stromal interaction molecule 1 (STIM1) is a newly discovered Ca2+ sensor on the endoplasmic reticulum which is an indispensable part in the activation of store-operated Ca2+ channels (SOC). Recent studies demonstrate that SOC of pulmonary smooth muscle cells (PASMCs) were upregulated by chronic hypoxia which contribute to the enhanced pulmonary vasoconstriction and vascular remodeling. However, the exact role of STIM1 in the development of chronic hypoxic pulmonary hypertension(HPH) remains unclear. METHODS In this study we investigated the cellular distribution and expression of STIM1 by immunofluorescence, qRTPCR and Western blotting methods in Wistar rat distal intrapulmonary arteries under normal and chronic hypobaric hypoxic conditions. In vitro, Wistar rat PASMCs were isolated and cultured. PASMCs were transfected with siRNA targeting STIM1 gene by liposome. The expression of STIM1 protein was detected by Western blotting. [3H]-thymidine ([3H]-TdR) incorporation were performed to detect PASMCs proliferation. The cell cycle was analyzed by flow cytometry. The SOC-mediated Ca2+ influx was calculated by Ca2+ fluorescence imaging and the nuclear translocation of NFATc3 was determined by immunofluorescence and Western blot analysis of nuclear extracts. RESULTS We found that during the development of HPH and the initiation of vascular remodeling, the mRNA and protein expression levels of STIM1 significantly increased in the distal intrapulmonary arteries. Moderate hypoxia significantly promotes PASMCs proliferation and cell cycle progression. Silencing of STIM1 significantly decreased cellular proliferation and delayed the cell cycle progression induced by hypoxia. Silencing of STIM1 also significantly decreased SOC-mediated Ca2+ influx and inhibited the nuclear translocation of NFATc3 in hypoxic PASMCs. CONCLUSION Our findings suggest that chronic hypobaric hypoxia upregulates the expression of STIM1 in the distal intrapulmonary arteries which plays an important role in the hypoxia-induced PASMCs proliferation via SOC/Ca2+/NFAT pathway and may represent a novel therapeutic target for the prevention of hypoxia pulmonary hypertension.
منابع مشابه
Inhibition of SOC/Ca2+/NFAT pathway is involved in the anti-proliferative effect of sildenafil on pulmonary artery smooth muscle cells
BACKGROUND Sildenafil, a potent phosphodiesterase type 5 (PDE5) inhibitor, has been proposed as a treatment for pulmonary arterial hypertension (PAH). The mechanism of its anti-proliferative effect on pulmonary artery smooth muscle cells (PASMC) is unclear. Nuclear translocation of nuclear factor of activated T-cells (NFAT) is thought to be involved in PASMC proliferation and PAH. Increase in c...
متن کاملQuercetin protects PC-12 cells against hypoxia injury by down-regulation of miR-122
Objective(s): Impairment of nerve cells of brain induced by hypoxia results in energy-deprivation and dysfunction, which accompanies with neurons apoptosis. Improving function of nerve cells is important for treating cerebral anoxia. This study aimed to investigate the role of Quercetin (Quer) in hypoxia-induced injury of pheochromocytoma (PC-12) cells. Materials and Methods: PC-12 cells were c...
متن کاملChronic intermittent hypobaric hypoxia attenuates monocrotaline-induced pulmonary arterial hypertension via modulating inflammation and suppressing NF-κB /p38 pathway
Objective(s): Inflammation is involved in various forms of pulmonary arterial hypertension (PAH). Although the pathophysiology of PAH remains uncertain, NF-κB and p38 mitogen-activated protein kinase (p38 MAPK) has been reportedto be associated with many inflammatory mediators of PAH. This study aimed to evaluate the effect of chronic intermittent hypobaric hypoxia (CIHH) on pulmonary inflammat...
متن کاملInhibition of hypoxia-induced calcium responses in pulmonary arterial smooth muscle by acetazolamide is independent of carbonic anhydrase inhibition.
Hypoxic pulmonary vasoconstriction (HPV) occurs with ascent to high altitude and can contribute to development of high altitude pulmonary edema (HAPE). Vascular smooth muscle contains carbonic anhydrase (CA), and acetazolamide (AZ), a CA inhibitor, blunts HPV and might be useful in the prevention of HAPE. The mechanism by which AZ impairs HPV is uncertain. Originally developed as a diuretic, AZ...
متن کاملKnockdown of stromal interaction molecule 1 attenuates store-operated Ca2+ entry and Ca2+ responses to acute hypoxia in pulmonary arterial smooth muscle.
Stromal interaction molecule 1 (STIM1) is a recently discovered membrane-spanning protein thought to sense lumenal Ca(2+) in sarco(endo)plasmic reticulum (SR/ER) and transduce activation of Ca(2+)-permeable store-operated channels (SOC) in plasmalemma in response to SR/ER Ca(2+) depletion. To evaluate the role of STIM1 and a closely related protein, STIM2, in Ca(2+) signaling of rat distal pulm...
متن کامل